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Response of composite plates with random material 

properties using FEM and Monte Carlo simulation 

B. NAVANEETHA RAJ, N. G. R. IYENGAR and D. YADAV 

Department of Aerospace Engineering, I.I.T. Kanpur 208 016, India 

Abstract-Composite materials have a large number of parameters associated with their manufactur- 

ing. It is not physically possible to control all these parameters, and hence variation in the material 

properties result. In this paper, for a better modeling of the material properties, these are treated 
as random variables. Static response characteristics of graphite/epoxy composite laminates are ob- 
tained with the help of Monte Carlo simulation and the Finite Element Method (FEM) for different 

boundary conditions, thickness ratio, aspect ratios and fiber orientations. The input material prop- 
erty mean and variance are assumed to be known. From the limited analytical study conducted it 
is observed that a single design curve can predict normalized characteristics for all the parameters 
considered. 

Keywords: Composite; laminates; material property; random; deflection. 

NOTATION 

a length of the laminate 
' 

b width of the laminate 

h thickness of the laminate 

a/ h thickness ratio 

AR aspect ratio 

CC clamped-clamped (plate) 

El longitudinal modulus 

Et transverse modulus 

Git in-plane shear modulus 

Gt; , Glz transverse shear modulii 

l, t, z material axes of the laminate 

RV random variable 

SD standard deviation 
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SS simply supported (plate) 

U strain energy 

V potential energy 

u, V, w displacements along x, y and z directions 

uo, v«, wo mid plane displacements 

x, y, z reference axes of the laminate 

Greek 

J1- mean 

u Poisson's ratio 

a standard derivation 

1. INTRODUCTION 

The mechanical and physical properties of the fiber, resin, etc. constituting the 

lamina, as provided by the manufacturers, are generally average properties subject 
to specific production conditions. Because of inherent variations in the production 
conditions from batch to batch, dispersion in the properties of the raw materials 

always exists. 

The raw materials are combined in a specific proportion to form a lamina. Fac- 

tors such as temperature, pressure, humidity, fiber spacing, voids, curing time, 
etc. enter along with the variations in the properties of the raw material. These 
variations result in the variation of lamina properties. The laminae are stacked 

together to form laminates and, therefore, variations are present in the stiffness 
coefficients of the laminates. Tables 1 and 2 show the variations observed in 

strength and stiffness properties of composite laminates in a moulding lot [1]. 
These variations in strength and stiffness properties introduce a factor of uncer- 

tainty in the response of structures made up of composite materials. Accurate pre- 
dictions of system behaviour call for a probabilistic analysis approach for com- 

posites by modeling their mechanical and physical properties as random variables 

(RVs). 
Ibrahim [2] reviewed a number of topics pertaining to structural dynamics with 

random parameter uncertainties. Nakagiri et al. [3] studied simply supported 
(SS) graphite/epoxy laminates with a Stochastic Finite Element Method (SFEM) 

taking fiber orientation, thickness of each layer and numbers of layers as ran- 
dom variables and showed that the overall stiffness of the laminate is largely 
dependent on fiber orientation. Leissa and Martin [4] showed that the varia- 
tion of fiber spacing or redistribution of fibers tends to increase the buckling 
load by 38% and fundamental natural frequency by 21 % for rectangular compos- 
ite plates. Englestad and Reddy [5] employed Monte Carlo simulation and dif- 
ferent probabilistic distributions to represent the uncertainty of constituent level 
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Table 1. 
Variation of stiffness properties for a widely used graphite/epoxy composite from five sources 

Table 2. 
Variation of strength properties for a widely used graphite/epoxy composite from five sources 

properties in metal matrix composites. Vinckenroy and de Wilde [6] established 

a procedure to obtain the best fit for each material property to study the be- 

haviour of perforated plates and determine the probability distribution of the re- 

sponse. Salim et al. [7-9] studied the statistical response of the composite lam- 

inates considering longitudinal modulus [Ell, transverse modulus [E,], Poisson's 

ratio [vl,] etc. as independent random variables. Salim et al. [9] have shown 

that there is a change in the mode shape with a change in the SD of input 
RVs. 

Salim et al. [8] employed Rayleigh Ritz formulation along with perturbation 

technique for the analysis of composite laminates. However, this technique is 

limited to simple plate geometries and small variations in input variables. 

In the present investigation, second order statistics of the basic material properties 
are assumed to be known. Using Monte Carlo simulation a large sample of 
material properties are generated to form an ensemble with the given statistical 

description. The effect of the dispersion in the input material properties of the 

laminate on the static response of the plate is studied by employing FEM and, using 
the input ensemble of laminate properties, the response ensemble is obtained. This 

is analysed to obtain the response statistics. 
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2. FORMULATION 

As stated in the previous section finite element technique is employed for analysing 
the deflection behaviour of laminates made up of composite material. The laminate 

is subjected to either uniform loading or sinusoidally varying load. 

2.1. Displacement field 

Figure 1 shows the rectangular laminated plate considered for the investigation: 
u, v, w are the displacements along the x, y and z axes, respectively; uo, vo and 

wo represent the mid-plane displacements and Vf,, and Vr, are the rotations of the 
normals to the mid-plane after deformation. The displacement field corresponding 
to the higher order shear deformation theory (HSDT) proposed by Reddy [10] is 

where 

Introducing C) = 1, C2 = C4 = 0, the displacement field can be reduced to first 
order shear deformation theory (FSDT) of [ 1 1 ]. For the HSDT, the values of these 
constants are 

From equation (2.1 ) it can be seen that this form of displacement field leads to 

second order derivatives in the strain vector and hence C continuous elements 

have to be used for the FEM. The difficulties associated with C' elements are well 
known. This could be circumvented by expressing the displacement field expressed 
by equation (2.1 ) in the following form: 

where 0, -- awolax and 0, = 3wo /8y. 
The strain vector will now contain only first order derivatives. However, the 

number of degrees of freedom (DOF) per node increases from 5 to 7. In this 

investigation, a nine noded isoparametric Lagrangian element has been used, 

leading to 63 DOF per element. 
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Figure 1. Laminate geometry and coordinate system. 

2.2. Strain displacement relations 

The strain displacement relations based on equation (2.4) following small deforma- 

tion are as follows: 

where is the bending strain vector and is the shear strain vector. Further, 

The displacement vector {8j is 
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The stress-strain relations for the kth lamina with respect to the reference coordi- 

nate system are 

where [Qi.i ] are the transformed stiffness coefficients for the kth lamina. 

2.3. Laminate constitute equation 

Instead of working with stresses which are functions of x, y and z, it is convenient 

to work with stress resultants, namely forces and moments per unit width. These are 

obtained by integrating the stresses along the thickness direction. These are defined 

as 

where NL is the number of layers in the laminate. 

2.4. Finite element modeling 

A nine noded isoparametric Lagrangian element has been employed for discretizing 
the laminate. The displacement vector {8) and the geometry are represented as 

where NN represents the number of nodes per element. N; is the shape function of 

the i th node. 

The strain vector of equation (2.6) can be expressed as 
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In equation (2.13) [LI], ..., [L5] are matrices of differential operators. These are 

given by 

The strain displacement matrix [B] for the ith node is written as 
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where 

The element stiffness matrix [K](e) can be expressed as 

in which [D] is the material matrix, given by 
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The elements of plate stiffness matrices ..., are defined as 

The element stiffness matrix in terms of natural coordinate can be written as 

in which 

2.5. Total potential of the laminate 

The total potential of the laminate due to bending is given by 

Here, NE is the number of elements into which the total domain is discretized, 

Substituting for {E} from equation (2.13) we get 

Substituting equation (2.10) in equation (2.24) we obtain 
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Making use of equation (2.15), we get 

where is the generalised displacement vector. 

The elemental potential energy due to the external load is given by 

where lq-1 is the load vector corresponding to each DOF. 

Substitution for {8} from equation (2.10) we obtain 

where 

Minimization of the total potential with respect to {d} leads to the equilibrium 

equation governing the bending of the laminate. Substituting for ute) and v(e) from 

equation (2.26) and equation (2.28) in equation (2.22) and minimizing with respect 
to {d}, we obtain 

in which 

Equation (2.30) is then solved for any given configuration and material to obtain 

displacements. 

3. SOLUTION APPROACH - MONTE CARLO TECHNIQUE 

The stiffness matrix [K] involves the material properties which are treated as 

RVs. Using the second order statistics of the material properties which are treated 
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as independent random variables, the second order statistics of the response are 

obtained by using the Monte Carlo approach. In this technique a set of random 

numbers are generated to fit the material property mean and SD. These are used to 

numerically solve for the plate response values to obtain a sample of the response. 
The sample is analysed to evaluate the response statistics. 

3. 1. Input sample generation 

A set of samples of random numbers are generated with available software having 
a given size, mean and standard deviation. The samples are checked for shift from 

the target mean (p) and standard deviation (a) which are usually present to a small 

extent because of numerical round-off. The shifts in the mean and the standard 

deviation are removed in the following manner. 

3.2. Removal of shift in mean and SD 

If xl (i = 1, 2, ... , n) is a set a pseudo-random numbers, then the mean is given by 

The sample with /td,,i,-,d is obtained by offsetting each of the Xi by a constant 

8 (,u - J-ldcsircd). The constraints for offsetting are 

if - < 0, the sample with J-ldesired is increased by adding ) s ) to each number, 
ifs > 0, the numbers are reduced by an amount e. 

The standard deviation, cr, of the set of random numbers can be obtained from the 

relations 

Then deviation in SD, 

Each number is multiplied by the fsD to get a scaled sample with (desired as the stan- 
dard deviation. The corrections are carried out for the SD first followed by the mean. 

4. SOLUTION OF GOVERNING EQUATION 

The governing equation (2.30) has been solved in conjunction with the finite 

element technique. As stated earlier, a 7-DOF, Co continuity model with a 9-noded 

Lagrangian element is employed. The plate is discretized into the required number 

of elements using a mass generation module. With simple changes in the input 

D
ow

nl
oa

de
d 

by
 [

Si
au

liu
 U

ni
ve

rs
ity

 L
ib

ra
ry

] 
at

 0
7:

22
 1

7 
Fe

br
ua

ry
 2

01
3 



230 

data, isotropic, orthotropic and anisotropic laminates can be analysed. Element 

stiffnesses are assembled with the help of a connectivity matrix, and boundary 
conditions are appropriately employed to the boundary elements. Depending on 

the nature of loading, the element force vector is generated and assembled. A NAG 

solver is used to obtain the deflection. The statistical information, like the mean and 

standard deviation of the deflection, is then obtained. 

5. RESULTS AND DISCUSSION 

Table 3 shows the convergence study carried out on a square, moderately thick plate 

(a/ h = 10.0) of isotropic material, simply supported on all edges and subjected to 

a uniform loading q = 100 N/m2. From the table it is observed that a 5 x 5 mesh 

gives very good engineering accuracy. 
Table 4 shows the result for a study carried out on a l m square composite plate 

for two different loading situations. Results are compared with the values obtained 

by Shankara [12]. Results appear to be well within the acceptable variations. 

Table 3. 

Convergence study for a square isotropic plate with all edges simply supported 

w = wEth3 j(qa4); v = 0.3; q = 100 N/m2; a/h = 10.0. 

Table 4. 
Validation study on a square composite laminate 

ill = wEth3 j(qa4); El = 40Et ; Glt = Glz = 0.66Et ; Gtz = 0.5Et ; vlt = 0.25; q = 100 N/m2. 
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The material properties that are considered to be random for the purposes of the 

study are El, E,, G,t and Gtz. Samples are generated with the standard deviation 

varying from 2 to 20% of their mean values with a sample size of 1000. Ten 

such samples are used for each study. The mean values of the properties for T300, 

graphite/epoxy used for computation are presented in Table 5. 

In the first set of studies, dispersion of one random variable is assessed, while 

all other random variables are kept constant at their mean values. The geometric 

parameters like aspect ratio (AR), ply orientation, thickness ratio (a / h ) and bound- 

ary conditions are varied. Results are computed for 4-ply anti-symmetric angle-ply 
laminates. The plate is uniformly loaded with intensity q = 1000 N/m2. Displace- 
ments are computed at the mid point of the plate. 

Figures 2 to 6 show the response of the plate for each input RVs (El, Et, vlr, 

Glt and Gtz), respectively. For these sets of figures, unless otherwise specified, 
the square laminate (a = 1.0 m) is simply supported on all edges with a/ h = 10 

and [45°/- 45°/45°/- 45°] ply orientations. Figure 2 shows the plate response for 

different values of normalized OrE,. For small values of QE, the response is linear. 

However, it is slightly nonlinear for large values of UE,. The dispersion in the 

displacement value is found to be maximum for a/ h = 100 (thin plate). From 

the figure, it is observed that the dispersion in displacement is very significant in 

the cases of change in AR and change in thickness as compared to a change in ply 
orientations. 

Figure 3 shows the standard deviation in displacement for different values of UE, 
Here again it is observed that thin plates are affected more than thick plates; but the 

changes are much less compared to when El is randomly varying. This observation 

is valid even for variation in aspect ratio, fiber orientation and boundary conditions. 

The plates with fiber orientation of 15° show higher sensitivity as compared to 0° 
laminate. 

Figure 4 shows the effect of dispersion in major Poisson's ratio vlt on standard 

deviation of maximum displacement. It is observed that the displacement charac- 

teristics of the SS case are affected more than the plate with CC edge. Here, again 
thin plates are affected more than thick plates. 

The effect of input random variables Glt and Gtz on the response is shown in 

Fig. 5. The 0° laminate and a plate with all = 100 is affected maximum by 

change in Glt and Gz. 
The response for input random variable G14 is presented in Fig. 6. The response 

curves for both SS and CC boundary conditions almost coincide with each other. 

Table 5. 
Mean properties of T300/5208, graphite/epoxy composite 
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Figure 2. Deflection characteristics of laminates with OrE, - 

Figure 3. Deflection characteristics of laminates with ŒEt. 
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Figure 4. Deflection characteristics of laminates with ŒV/t. 

Figure 5. Deflection characteristics of laminates with ŒGII and 9Gz - 
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Figure 6. Deflection characteristics of laminates with 

Figure 7. Response sensitivity of the laminate with material property randomness. 

D
ow

nl
oa

de
d 

by
 [

Si
au

liu
 U

ni
ve

rs
ity

 L
ib

ra
ry

] 
at

 0
7:

22
 1

7 
Fe

br
ua

ry
 2

01
3 



235 

Figure 8. Normalized response characteristics of laminates. 

Figure 9. Plate response characteristics. 
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The behaviour for all other characteristics, in general, resemble the response shown 

in Fig. 5. 

In the second set of investigations, all the material properties namely El, E,, vl,, 

Glt, GI, and Gtz vary simultaneously, each assuming the same value for the ratio 

of its standard deviation to mean. The displacement SDs are presented in Fig. 7. 

The displacement standard deviation, normalized with the mean displacement of 

the laminate when all the material properties are given their mean values, is shown 

in Fig. 8. It is observed that the different curves for aspect ratio, boundary condition, 
thickness ratio and fiber orientation variation are very similar in nature. All these 

individual curves fall into a single curve as shown in Fig. 9 with slight dispersion in 

the values at higher values of input SD. The curve becomes nonlinear beyond 10% 

of the input variable a. The standard deviation of normalized displacement is 25% 

for a 20% change in the standard deviation of input variable. 

6. CONCLUSIONS 

On the basis of the limited investigation carried out, the following observations can 

be made. 

w The longitudinal modulus El and in-plane shear modulus Gl, are the most critical 

material properties as they considerably influence the deflection characteristics of 

the laminate. 

. Thin plates (a / h ) 100) are most sensitive to the variation of input material 

characteristics. 

. The response of the laminate is linear fro small dispersion in material properties 
(< 10%); for higher values of dispersion the response in nonlinear. 

w The normalized characteristic curves of the plate with different AR, al h, bound- 

ary conditions and ply orientation collapse into a single curve with a tolerance of 

1.5% of SD of output. 
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