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Response of composite plates with random material
properties using FEM and Monte Carlo simulation

B. NAVANEETHA RAJ, N. G. R.IYENGAR and D. YADAV
Department of Aerospace Engineering, I.1.T. Kanpur 208 016, India

Abstract—Composite materials have a large number of parameters associated with their manufactur-
ing. It is not physically possible to control all these parameters, and hence variation in the material
properties result. In this paper, for a better modeling of the material properties, thesc are treated
as random variables. Static response characteristics of graphite/epoxy composite laminates are ob-
tained with the help of Monte Carlo simulation and the Finite Element Method (FEM) for different
boundary conditions, thickness ratio, aspect ratios and fiber orientations. The input material prop-
erty mean and variance are assumed to be known. From the limited analytical study conducted it
is observed that a single design curve can predict normalized characteristics for all the parameters
considered.

Keywords: Composite; laminates; material property; random; deflection.

NOTATION

a length of the laminate

b width of the laminate

h thickness of the laminate
a/h thickness ratio

AR aspect ratio

CC clamped—clamped (plate)
E longitudinal modulus

E, transverse modulus

Gy, in-plane shear modulus
G,;, Gy, transverse shear modulii
I, 1,z material axes of the laminate
RV random variable

SD standard deviation
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SS simply supported (plate)

U strain energy

Vv potential energy

U, v, w displacements along x, y and 7 directions
Ug, Vg, Wo mid plane displacements

X, ¥, 2 reference axes of the laminate
Greek

u mean

v Poisson’s ratio

o standard derivation

1. INTRODUCTION

The mechanical and physical properties of the fiber, resin, etc. constituting the
lamina, as provided by the manufacturers, are generally average properties subject
to specific production conditions. Because of inherent variations in the production
conditions from batch to batch, dispersion in the properties of the raw materials
always exists.

The raw materials are combined in a specific proportion to form a lamina. Fac-
tors such as temperature, pressure, humidity, fiber spacing, voids, curing time,
etc. enter along with the variations in the properties of the raw material. These
variations result in the variation of lamina properties. The laminae are stacked
together to form laminates and, therefore, variations are present in the stiffness
coefficients of the laminates. Tables 1 and 2 show the variations observed in
strength and stiffness properties of composite laminates in a moulding lot [1].
These variations in strength and stiffness properties introduce a factor of uncer-
tainty in the response of structures made up of composite materials. Accurate pre-
dictions of system behaviour call for a probabilistic analysis approach for com-
posites by modeling their mechanical and physical properties as random variables
(RVs).

Ibrahim [2] reviewed a number of topics pertaining to structural dynamics with
random parameter uncertainties. Nakagiri er al. [3] studied simply supported
(SS) graphite/epoxy laminates with a Stochastic Finite Element Method (SFEM)
taking fiber orientation, thickness of each layer and numbers of layers as ran-
dom variables and showed that the overall stiffness of the laminate is largely
dependent on fiber orientation. Leissa and Martin [4] showed that the varia-
tion of fiber spacing or redistribution of fibers tends to increase the buckling
load by 38% and fundamental natural frequency by 21% for rectangular compos-
ite plates. Englestad and Reddy [5] employed Monte Carlo simulation and dif-
ferent probabilistic distributions to represent the uncertainty of constituent level
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Table 1.
Variation of stiffness properties for a widely used graphite/epoxy composite from five sources

Elastic constants (106 psi) 1 2 3 4 5 Max.
i diff. %

Long. tensile modulus 20.8 18.1 21.00 20.6 18.5 16
Long. comp. modulus 18.6 14.5 21.00 19.3 18.5 45
Trans. tensile modulus 1.9 1.8 1.7 1.3 1.6 46
In-plane shear modulus 0.85 — 0.65 0.80 0.65 31
Poisson’s ratio 0.30 — — 0.32 0.25 28
Table 2.

Variation of strength properties for a widely used graphite/epoxy composite {rom five sources

Strength properties (10 psi) 1 2 3 4 5 Max.
diff. %
Long. tension 274 190 180 164 169 67
Long. compression 280 126 180 126 162 122
Trans. tension 9.5 5.2 8.0 5.4 6.0 83
Trans. compression 39 — 30 21 25 86
In-plane shear 17.3 — 12 8.4 — 106
Interlaminar shear — 13.5 13 — 7.1 90

properties in metal matrix composites. Vinckenroy and de Wilde [6] established
a procedure to obtain the best fit for each material property to study the be-
haviour of perforated plates and determine the probability distribution of the re-
sponse. Salim et al. |7-9] studied the statistical response of the composite lam-
inates considering longitudinal modulus [E;], transverse modulus [E,], Poisson’s
ratio [v;,] etc. as independent random variables. Salim et al. [9] have shown
that there is a change in the mode shape with a change in the SD of input
RVs.

Salim et al. |8] employed Rayleigh Ritz formulation along with perturbation
technique for the analysis of composite laminates. However, this technique is
limited to simple plate geometries and small variations in input variables.

In the present investigation, second order statistics of the basic material properties
are assumed to be known. Using Monte Carlo simulation a large sample of
material properties are generated to form an ensemble with the given statistical
description. The effect of the dispersion in the input material properties of the
laminate on the static response of the plate is studied by employing FEM and, using
the input ensemble of laminate properties, the response ensemble is obtained. This
is analysed to obtain the response statistics.
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2. FORMULATION

As stated in the previous section finite element technique is employed for analysing
the deflection behaviour of laminates made up of composite material. The laminate
is subjected to either uniform loading or sinusoidally varying load.

2.1. Displacement field

Figure | shows the rectangular laminated plate considered for the investigation:
u, v, w are the displacements along the x, y and z axes, respectively; ug, vy and
wq represent the mid-plane displacements and v, and ¥, are the rotations of the
normals to the mid-plane after deformation. The displacement field corresponding
to the higher order shear deformation theory (HSDT) proposed by Reddy [10] is

0
u(x, v, z) =uo(x, y) + fi(yx(x, y) + fz(Z)%,

bk, ¥.2) = w0k, ) + fi( (6, ¥) + fm‘%ﬁ @1
w(x, y, z) = wolx, y),
where
fiz) = Ciz — G,
() = —4C47°.

Introducing C; = 1, C; = C4 = 0, the displacement field can be reduced to first
order shear deformation theory (FSDT) of [11]. For the HSDT, the values of these
constants are

(2.2)

4
C =1, Cg:C4=3h2.

From equation (2.1) it can be seen that this form of displacement field leads to
second order derivatives in the strain vector and hence C'! continuous elements
have to be used for the FEM. The difficulties associated with C' elements are well
known. This could be circumvented by expressing the displacement field expressed
by equation (2.1) in the following form:

u(x, y,z) = uo(x, y) + fi@¥(x, y) + f2(2)0:(x, y),
v(x, y,2) = volx, y) + [l (x, ) + f2(2)6y(x, y), (2.4)
w(x, y, 7) = wolx, y),
where 0, = dwp/dx and 6, = dwy/9y.
The strain vector will now contain only first order derivatives. However, the
number of degrees of freedom (DOF) per node increases from 5 to 7. In this

investigation, a nine noded isoparametric Lagrangian element has been used,
leading to 63 DOF per element.

(2.3)
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Figure 1. Laminate geometry and coordinate system.

2.2. Strain displacement relations

The strain displacement relations based on equation (2.4) following small deforma-
tion are as follows:

{en) = {ec &, v} = {1} + 2(c) + 2 {Ka),
{es) = {rye Vo) = {e2} + 2 k3),

where {gy,] is the bending strain vector and {&,]} is the shear strain vector. Further,

(2.5)

{e1} = {uo.x vo.y ug,y + o}’

{2} = Cr{yr, ¥l + {wo.y + wor)

k) = Crldres + ¥y — Yoy + Vi)’

{2} = —Col{Wrex Yoy Yoy + ¥}’
—Ca{brx Oy Oy + 0, 1T,

{3} = =3Ca{y, ¥}T — Calby 61}

The displacement vector {§} is

{8} = {uo vo wo 6, 6, ¥, Y} 2.7)

(2.6)
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The stress—strain relations for the kth lamina with respect to the reference coordi-

nate system are

o Q
oy Q
o =|Q
Tyz 0
Tz g 0

where [ai_,«] are the transformed

" §l2 glb 0 0 e

12 02 0%0 0 e,

16 0% 06 0 0 )/.\.;\- . (2.8)
0 0 QuQus| |7
0 0 Qu 655_ . Ve I

stiffness coefficients for the kth lamina.

2.3. Laminate constitute equation

Instead of working with stresses

which are functions of x, y and z, it is convenient

to work with stress resultants, namely forces and moments per unit width. These are

obtained by integrating the stress
as

[ N, M, P,
N A M AN P Y
L N\‘ AN MX‘ v P\‘ Ay

es along the thickness direction. These are defined

NL = Oy

=) / o, + (l.z.2%)dz,
e k-1
k=1 o0

(2.9)

R, R\.} i /1" {r} >
o= (1,27 dz,
Q.\‘ Q,\' ’,\X_]: o1 Tas

where NL is the number of layers in the laminate.

2.4. Finite element modeling

A nine noded isoparametric Lagrangian element has been employed for discretizing
the laminate. The displacement vector {3} and the geometry are represented as

NN

(8} =" Ni{ai}, (2.10)
i=l1
NN

x=Y Nux, (2.11)
i=l1
NN

y=Y N, (2.12)
i=1

where NN represents the number of nodes per element. »; is the shape function of

the ith node.

The strain vector of equation (2.6) can be expressed as
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The strain displacement matrix [B] for the ith node is written as
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{e1) = [L1]{8),
{2} = [L2]{8},
{1} = [L3]{8},
(o) = [L4]{8},
{k3) = [Ls]{8}.

- 5 _
— 000000
0x

d
- 0 —00000
L 3y ,

‘—iOOOOO
dx i

0

00—00C, 0O
ay

L2 - ’
B}

00—000 C
dx

_ -
00000 0 C—
ox
3
L,=|00000C,— 0O |,
3 ay
00000C, > ¢, °
'a 3y
3 3
000 0 G2 0 2
dx Jx
__looocl o o2 o
L4 4(\7 Zay
000C,— C I 6,2
i 43 43 ax oy
- 000C, 0 C, 0
T 0000 Cy 0 G

[B]; = [LIN;,

(2.13)

, [Ls] are matrices of differential operators. These are

(2.14)

(2.15)
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0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0
0 0 0 Ci—
Ay
0
0 0 0 Ci—
ox
d
0 0 —Cy— 0
dx
0 —C d 0
43 28y
0 0 d
0 ~C4— ~C4— -,
ax ay ax
d
— 0 0 C
dy
9 0 0 0
dx
0 -3C, 0 =30,
0 0 -3C, 0

The element stiffness matrix [ K1) can be expressed as

(K1 =

[BI"[DI[B]dA,

Ale)

in which [ D] is the material matrix, given by

(D] =

[[Ai] [B] [E]1 O O
[B] [DJ[F] O 0
(E] [F]11H] O O
0 0 0 [A]I[D:]

| 0 0 0 [Ds] [F] ]

0

=3C,

(2.16)

(2.17)

(2.18)
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The elements of plate stiffness matrices Ay;;, B ., Hj; are defined as

[js -

Ayij, Bij. Dy, Eij, Fuij, Hij

NL %
:Zf (), (1z.2%, 2,24 %) dz, i,j=12and6, (2.19)
k=1 V-1

NL k
Azij, Daijs Faij = Z/ (0;),(1.2%.2%dz, i, j=4,5.
k=1 ¥ k=1

The element stiffness matrix in terms of natural coordinate &, n can be written as

1 1
[k;] = / f (B[ DIIB; ] det[J] dzdn, (2.20)
—1J-
in which
dx dy
lE
[J1= g EX 2.21)
dn dn

2.5. Total potential of the laminate

The total potential of the laminate due to bending is given by
NE
m=>
e=1
NE NE
=Y U+ ve, (2.22)
e=1 e=1

Here, NE is the number of elements into which the total domain is discretized,

1 _ _
U® = —/ #Y [D){g} dA. (2.23)
2 Ale)
Substituting for {€} from equation (2.13) we get
U = % {8} L] [DIIL]{8}} dA. (2.24)
Ale)

Substituting equation (2.10) in equation (2.24) we obtain

1 NN NN
U“’:—/ SATILYTN; | D LN, {5 dA. 2.25
> Am[<§{ }TIL) )[ ](;[] { })} (2.25)
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Making use of equation (2.15), we get

U = E/ ({d}"[BY"[DI[BI{d}) dA, (2.26)
Ale)

where {d} is the generalised displacement vector.
The elemental potential energy due to the external load is given by

2

where {g} is the load vector corresponding to each DOF.
Substitution for {8} from equation (2.10) we obtain

NN
Ve = — / ( N,{s,-}r){a,-}“’) dA
Ate) ;

Ve = ——/ ){5}7{5} dA, (2.27)
Ale

— _{d}(e)'l'{F}(e)’ (2_28)
where
(F}9 = / {N}("’{ﬁ}("’ dA. (2.29)
(e)

Minimization of the total potential with respect to {d} leads to the equilibrium
equation governing the bending of the laminate. Substituting for U and V' from
equation (2.26) and equation (2.28) in equation (2.22) and minimizing with respect
to {d}, we obtain

[KNd} +{F} =0, (2.30)
in which
NE

{dy =" (@),

e=]

NE
[K1=) 1K1,
e=1

NE

(Fy == (F1¢.

e=1

Equation (2.30) is then solved for any given configuration and material to obtain
displacements.

3. SOLUTION APPROACH — MONTE CARLO TECHNIQUE

The stiffness matrix [K] involves the material properties which are treated as
RVs. Using the second order statistics of the material properties which are treated
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as independent random variables, the second order statistics of the response are
obtained by using the Monte Carlo approach. In this technique a set of random
numbers are generated to fit the material property mean and SD. These are used to
numerically solve for the plate response values to obtain a sample of the response.
The sample is analysed to evaluate the response statistics.

3.1. Input sample generation

A set of samples of random numbers are generated with available software having
a given size, mean and standard deviation. The samples are checked for shift from
the target mean (p) and standard deviation (o) which are usually present to a small
extent because of numerical round-off. The shifts in the mean and the standard
deviation are removed in the following manner.

3.2. Removal of shift in mean and SD

Ifx; (i =1,2,...,n)is a set a pseudo-random numbers, then the mean is given by

n x[
=Y = 3.1)
i n

The sample with pgeied 1S Obtained by offsetting each of the x; by a constant
& = (|4 — Mdesired). The constraints for offsetting are

if ¢ < 0, the sample with ptgegireq 18 increased by adding || to each number,
it £ > 0, the numbers are reduced by an amount &.

The standard deviation, o, of the set of random numbers can be obtained from the
relations

ol = Z(X’T“). (3.2)

i=1
Then deviation in SD,

Odesired
Esp = . (3.3)
(o2

Each number is multiplied by the ggp to get a scaled sample with Ggegireq as the stan-
dard deviation. The corrections are carried out for the SD first followed by the mean.

4. SOLUTION OF GOVERNING EQUATION

The governing equation (2.30) has been solved in conjunction with the finite
element technique. As stated earlier, a 7-DOF, C° continuity model with a 9-noded
Lagrangian element is employed. The plate is discretized into the required number
of elements using a mass generation module. With simple changes in the input
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data, isotropic, orthotropic and anisotropic laminates can be analysed. Element
stiffnesses are assembled with the help of a connectivity matrix, and boundary
conditions are appropriately employed to the boundary elements. Depending on
the nature of loading, the element force vector is generated and assembled. A NAG
solver is used to obtain the deflection. The statistical information, like the mean and
standard deviation of the deflection, is then obtained.

5. RESULTS AND DISCUSSION

Table 3 shows the convergence study carried out on a square, moderately thick plate
(a/h = 10.0) of isotropic material, simply supported on all edges and subjected to
a uniform loading ¢ = 100 N/m?. From the table it is observed that a 5 x 5 mesh
gives very good engineering accuracy.

Table 4 shows the result for a study carried out on a | m square composite plate
for two different loading situations. Results are compared with the values obtained
by Shankara [12]. Results appear to be well within the acceptable variations.

Table 3.
Convergence study for a square isotropic plate with all edges simply supported

Mesh size Non dimensional displacement, w x 1072
2x2 4.397522
3x3 4.616823
4 x4 4.654705
5x5 5.643798

w=wEh3/(ga*);v =0.3; ¢ =100N/m% a/h = 10.0.

Table 4.
Validation study on a square composite laminate

Loading a/h 6 w (present) FSDT [12] HSDT [12]
Uniform 10 15° 0.9459 0.9698 0.9512
30° 0.9157 0.9518 0.9302
45° 0.8790 0.8919 0.8708
100 15° 0.6962 0.7095 0.7090
30° 0.7537 0.7690 0.7686
45° 0.7428 0.7284 0.7281
Sinusoidal 10 15° 0.5970 0.6350 0.6218
30° 0.5748 0.6167 0.6015
45° 0.5501 0.5765 0.5618
100 15° 0.4374 0.4765 0.4763
30° 0.4680 0.4550 0.4551
45° 0.4595 0.4694 0.4592

W= wkEh3/(ga*); Ej = 40E;; Gi; = Gy = 0.66E;; Gy = 0.5E;; vy = 0.25; ¢ = 100 N/m?.
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The material properties that are considered to be random for the purposes of the
study are E;, E,, G, and G,,. Samples are generated with the standard deviation
varying from 2 to 20% of their mean values with a sample size of 1000. Ten
such samples are used for each study. The mean values of the properties for T300,
graphite/epoxy used for computation are presented in Table 5.

In the first set of studies, dispersion of one random variable is assessed, while
all other random variables are kept constant at their mean values. The geometric
parameters like aspect ratio (AR), ply orientation, thickness ratio (a/ ) and bound-
ary conditions are varied. Results are computed for 4-ply anti-symmetric angle-ply
laminates. The plate is uniformly loaded with intensity ¢ = 1000 N/m?>. Displace-
ments are computed at the mid point of the plate.

Figures 2 to 6 show the response of the plate for each input RVs (E,, E;, v,
G, and G;,.), respectively. For these sets of figures, unless otherwise specified,
the square laminate (¢ = 1.0 m) is simply supported on all edges with a/k = 10
and [45°/— 45°/45° /— 45°] ply orientations. Figure 2 shows the plate response for
different values of normalized of,. For small values of o, the response is linear.
However, it is slightly nonlinear for large values of of,. The dispersion in the
displacement value is found to be maximum for a/h = 100 (thin plate). From
the figure, it is observed that the dispersion in displacement is very significant in
the cases of change in AR and change in thickness as compared to a change in ply
orientations.

Figure 3 shows the standard deviation in displacement for different values of of,.
Here again it is observed that thin plates are affected more than thick plates; but the
changes are much less compared to when E; is randomly varying. This observation
is valid even for variation in aspect ratio, fiber orientation and boundary conditions.
The plates with fiber orientation of 15° show higher sensitivity as compared to 0°
laminate.

Figure 4 shows the effect of dispersion in major Poisson’s ratio v, on standard
deviation of maximum displacement. It is observed that the displacement charac-
teristics of the SS case are affected more than the plate with CC edge. Here, again
thin plates are affected more than thick plates.

The effect of input random variables Gy, and G,, on the response is shown in
Fig. 5. The 0° laminate and a plate with a/h = 100 is affected maximum by
change in G, and G,.

The response for input random variable G; is presented in Fig. 6. The response
curves for both SS and CC boundary conditions almost coincide with each other.

Table 5.
Mean properties of T300/5208, graphite/epoxy composite

E; = 145 GPa G =4.5GPa
E; =10.7GPa G, =45GPa
vy = 0.31 Gtz = 3.5906 GPa
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The behaviour for all other characteristics, in general, resemble the response shown
in Fig. 5.

In the second set of investigations, all the material properties namely E;, E,, v,
Gy, G and G, vary simultancously, each assuming the same value for the ratio
of its standard deviation to mean. The displacement SDs are presented in Fig. 7.
The displacement standard deviation, normalized with the mean displacement of
the laminate when all the material properties are given their mean values, is shown
in Fig. 8. It is observed that the different curves for aspect ratio, boundary condition,
thickness ratio and fiber orientation variation are very similar in nature. All these
individual curves fall into a single curve as shown in Fig. 9 with slight dispersion in
the values at higher values of input SD. The curve becomes nonlinear beyond 10%
of the input variable . The standard deviation of normalized displacement is 25%
for a 20% change in the standard deviation of input variable.

6. CONCLUSIONS

On the basis of the limited investigation carried out, the following observations can
be made.

e The longitudinal modulus £; and in-plane shear modulus G, are the most critical
material properties as they considerably influence the deflection characteristics of
the laminate.

o Thin plates (a/h = 100) are most sensitive to the variation of input material
characteristics.

e The response of the laminate is linear fro small dispersion in material properties
(< 10%); for higher values of dispersion the response in nonlinear.

e The normalized characteristic curves of the plate with different AR, a/ h, bound-
ary conditions and ply orientation collapse into a single curve with a tolerance of
1.5% of SD of output.

Acknowledgement

Financial support received from the Structures Panel of Aeronautics Research
and Development Board, Ministry of Defence, Government of India is gratefully
acknowledged.

REFERENCES

1. C. Zweben, H. T. Hahn and T. W. Chow, Mechanical behaviour and properties of composite
materials, in: Delaware Composite Design Encyclopedia, Vol. 1. Technomic, Lancaster (1989).

2. R. A. Ibrahim, Structural dynamic with parameter uncertainties, Trans. ASME, Appl. Mech. Rev.
40, 309-328 (1987).

3. S. Nakagiri, H. Takabatake and S. Tani. Uncertain eigenvalue analysis of composite laminated
plates by SFEM, Compos. Struct. 109, 9—12 (1987).



Downloaded by [Siauliu University Library] at 07:22 17 February 2013

10.

12.

Response of composite plates with random material properties 237

. A. W. Leissa and A. F. Martin, Vibration and buckling of rectangular composite plates with
variable fiber spacing, Compos. Struct. 4, 339-357 (1990).

. S. P. Englestad and J. N. Reddy, Probabilistic methods for the analysis of metal matrix
composites, Compos. Sci. Technol. 50, 91-107 (1994).

. G. V. Vinckenroy and W. P. de Wilde, The use of Monte-Carlo technique in SFEM for
determination of the structural behaviour of composites, Compos. Struct. 32, 247253 (1995).

. S. Salim, D. Yadav and N. G. R. Iyengar, Analysis of composite plates with random material
characteristics, Mechan. Res. Commun. 20, 405-414 (1993).

. S. Salim, D. Yadav and N. G. R. Iyengar, Deflection of composite plates with random material
characteristics, in: Proc. Int. Symp. on Aerospace Science and Engineering, Bangalore, India,
pp- 236-239 (1992).

. S. Salim, D. Yadav and N. G. R. Iyengar, Free vibration of composite plates with randomness in

material properties, in: Proc. Fifth Int. Conf. on Recent Adv. in Struct. Dyn., Southampton, UK,

pp. 814823 (1994).

J. N. Reddy, A simple higher order theory for laminated composite plates, Trans. ASME, J. Appl.

Mech. 51, 745-752 (1984).

. P. C. Yang, C. H. Norris and Y. Stavsky, Elastic wave propagation in heterogeneous plates, /nt.

J. Solids, Struct. 2, 665-684 (1966).

C. A. Shankara, Analysis of composite laminated plates subjected to mechanical, hygral and

thermal loadings, PhD Thesis, Department of Aerospace Engineering, 1IT Kanpur, pp. 43—81

(1993).



